Result of Study Of Transforaminal Lumbar Interbody Fusion Surgery

Volume 4 | Issue 2 | July – Dec 2019 | Bhavesh R. Namsha, Udaygiri H. Meghnathi, Bhavik K. Ahir


Authors : Bhavesh R. Namsha, Udaygiri H. Meghnathi, Bhavik K. Ahir [1]

[1] Department of Orthopaedics, SSG Hospital & Medical college Baroda, Gujarat, India

Address of Correspondence
Dr. Udaygiri H. Meghnathi,
Department of Orthopaedics, SSG Hospital & Medical college Baroda, Gujarat, India
Email: udaymeghnathi@gmail.com


Abstract

Background: Low back pain is one of the most common reported problem affecting spine. The most common causes of Low back pain are herniated discs, lumbar canal stenosis, degenerative disc disease, spondylolisthesis. Over the past few decades, new treatments and technologies are being implemented to treat spinal disorders to improve patient outcome. The Main objective of study is to access clinical and Radiological result that is obtained with Transforaminal lumbar interbody fusion as a treatment of severe back pain and degenerative disc diseases & to describe outcomes following Transforaminal lumbar interbody fusion (TLIF) surgery.
Methods: A Total of 15 patients who had back pain with degenerative disc disease were operated by TLIF through period from July 2017 to July 2018. Results were measured using the Visual Analogue Scale(VAS) and Oswestry Disability Index (ODI).
Results: Marked improvement in back pain according to VAS. Pre operative Average VAS Score was 7 and post operative average VAS score at 6 month follow up was 1.73. According to ODI score pre operative average ODI score was 66.53 and post operative 6 month ODI score was 18.53
Conclusion: From this study we have concluded that Transforaminal lumbar interbody fusion (TLIF) is a safe and effective method of achieving spinal fusion in patients with degenerative disc disease & low grade spondylolisthesis and thereby reduces back pain and improves patient’s disability score
Keywords: transforaminal lumbar interbody fusion- TLIF, Visual Analogue Scale- VAS, Oswestry Disability Index- ODI, PEEK


How to Cite this ArticleNamsha B R, Meghnathi U H, Ahir B K. Result of Study Of Transforaminal Lumbar Interbody Fusion (TLIF) Surgery. International Journal of Spine July-Dec 2019; 4(2): .


(Abstract) (Full Text HTML) (Download PDF)


Management of thoracolumbar fractures in adults: Current algorithm

Volume 4 | Issue 2 | July – Dec 2019  | Vibhu Krishnan Viswanathan, Rishi Mugesh Kanna


Authors : Vibhu Krishnan Viswanathan [1], Rishi Mugesh Kanna [1]

[1] Department of Orthopaedics, Ganga Hospital, Sai Baba Colony, Coimbatore, India.

Address of Correspondence
Dr. Rishi Mugesh Kanna,
Spine Surgeon, Ganga Hospital, Sai Baba Colony, Coimbatore, India.
E-mail: rishiortho@gmail.com


Abstract

Thoraco-lumbar (TL) fractures are the most common sites for spinal injuries. The severity of these injuries can range from minor, un-displaced fractures amenable to conservative management to highly complex, unstable fractures requiring surgical interventions. There is still considerable ambiguity on various issues related to the management of these vertebral injuries. The current article addresses several crucial questions related to the management of TL spinal fractures. An elaborate search was performed on standard medical search engines including pubmed, google and medline databases using keywords “adult TL fractures”, adult thoracolumbar fractures”, “adult thoracolumbar injuries”, “adult thoracolumbar spinal injuries”, “spinal injuries” and “spinal fractures”. Based on this comprehensive narrative review, we have discussed the key consensus of the existing literature on various aspects of management of these fractures. Currently the most useful system for defining TL fractures is the AO classification system. The best initial imaging modality is computerize tomography (CT) scan, with magnetic resonance imaging (MRI) being the most useful modality in AO type B2 injuries. All patients with AO types B and C injuries require surgical intervention. The current literature is shifting in favor of posterior approach, in view of less complications and morbidity associated with these surgeries. The role of decompression in enhancing neurological recovery and the need for surgical fusion in addition to instrumentation in TL fractures are still controversial. The current literature is strongly against the use of high dose steroids in acute TL fractures with SCI.
Key words: Thoraco-lumbar fractures, AO Spine classification, Imaging modalities, Fracture fixation


How to Cite this Article: Viswanathan V K, Kanna R M | Management of thoracolumbar fractures in
adults: Current algorithm | International Journal of Spine | July-Dec 2019; 4(2): .



(Abstract) (Full Text HTML) (Download PDF)


Headless fully threaded screw (headless screw) versus headed partially threaded screw (headed screw) fixation techniques for odontoid fracture type II- A Case Series

Volume 4 | Issue 2 | July – Dec 2019  | Kanniah Thuraikumar, Kwong-Lee Wan, Sze Wei Lim


Authors : Kanniah Thuraikumar [1], Kwong-Lee Wan [1], Sze Wei Lim [1]

[1] Department of Orthopaedics surgeon, Sungai Buloh Hospital, Jalan
Hospital, 47000 Sungai Buloh, Selangor, Malaysia.

Address of Correspondence
Dr. Kwong-Lee Wan,
Department of Orthopaedics surgeon, Sungai Buloh Hospital, Jalan
Hospital, 47000 Sungai Buloh, Selangor, Malaysia
Email: wankwonglee@yahoo.com


Abstract

Odontoid type II fracture is managed with various methods from non-operative such as Halo-vest to operative such as via anterior or posterior approaches and fixation. Posterior fixation of C1-C2 reduces the rotational range of motion significantly. Anterior odontoid fixation is typically done with screws. We present a case series of anterior odontoid screw fixation comparing three cases of headed partially threaded screw (headed screw) to two cases of headless fully threaded screw (headless screw). The headless screw had the advantages of able to be embedded which reduced the risk of prominent hardware and allowed further advancement for more compression effect. The headless screw has better biomechanical strength compared to a headed screw.
Keywords: Anterior odontoid fixation, Odontoid screw, Headless screw


How to Cite this Article:  Thuraikumar K, Wan K-L, Lim S W. | Headless fully threaded screw (headless screw) versus headed partially threaded screw (headed screw) fixation techniques for odontoid fracture type II- A Case Series | . International Journal of Spin | July-Dec 2019; 4(2):


 


(Abstract) (Full Text HTML)      (Download PDF)


Management of Cervical Myelopathy

Volume 4 | Issue 1 | Jan – June 2019 | Page 16-21 | Naresh Babu J


Authors : Naresh Babu J [1]

[1] Dept of Spine Surgery, Mallika Spine Centre, Hyderabad, India

Address of Correspondence
Dr. Naresh Babu
Department of Spine Surgery, Mallika Spine Centre, 12-12-30 Old Club Road, Kothapet, Guntur & B-58, Journalist Colony, Jubilee Hills, Hyderabad 500033, India.


Abstract

Conservative management has limited role in established cases of cervical myelopathy. However intervention during early stages of the disease when there are minimal symptoms is still controversial. Conservative management in CSM has poor prognostic factors such as presence of myelopathy for more than 6 months, compression ratio of more than 0.4 (dividing sagittal diameter by transverse diameter) indicating severe compression of spinal cord and transverse area of cord less than 40mm2. Conservative treatment is aimed to prevent further neurological deterioration. As observed in the natural history studies, regression of myelopathy is highly unlikely. Surgical intervention is often pursued during the course of CSM depending on the progression of the condition. The degree of neurological recovery depends on pre-operative duration of symptoms. This review provides an overview of cervical myelopathy and focusses on the management and decision making aspect.
Keywords: cervical myelopathy, surgical management, natural history


How to Cite this Article: Babu N. Management of Cervical Myelopathy. International Journal of Spine Jan-June 2019;4(1):19-21 .


(Abstract) (Full Text HTML) (Download PDF)


Safety Scores in Spine Surgery – Technique or Technology ?

Volume 4 | Issue 1 | Jan – June 2019 | Page 1-2 | Shailesh Hadgaonkar [1], Ketan Khurjekar [1], Ashok Shyam[1],[2]


Authors : Shailesh Hadgaonkar [1], Ketan Khurjekar [1], Ashok Shyam[1],[2]

[1] Sancheti Institute for Orthopaedics &Rehabilitation, Pune, India
[2] Indian Orthopaedic Research Group, Thane, India

Address of Correspondence
IJS Editorial Officie
A-203, Manthan Apts, Shreesh CHS, Hajuri Road, Thane [W]
Maharashtra, India.
Email: editor.ijspine@gmail.com


The last 2 decades have seen a sea of change in the realm of spine surgery, in India, Asia and the world over. Ever improving implants, surgical techniques and diagnostic modalities have improved our results and reduced the risks involved in spine surgery. However, even today, explaining the risks and complications of spine surgery to a patient sitting in your consultation room is a daunting task- be it regarding a routine Microdiscectomy or a complex spinal reconstruction.

We often see and read of devastating complications and adverse events in spine surgery. And this is extremely disheartening because as surgeons, we attempt to deliver nothing but the best to our patients. What further complicates this intricate formula is the fact that similar surgery for a particular clinical prototype often has widely varied outcomes.

Where Do We Stand Today?
Diagnostic imaging too has come a long way from when Dr. Jules Guerin first attempted to surgically correct scoliosis. In fact, recent literature tells us that even our “State-of-the-art” PET scans and high-resolution Tesla MRI machines are soon to be supplemented by hybrid technologies such as the Fusion PET-MRI which combine the superior soft tissue contrast afforded by MRI scanners with PET-provided real time physiologic and metabolic data. Our understanding of conditions, especially spinal tumors stands to exponentially improve owing to such advancements in imaging.

Neuromonitoring has emerged as a valuable tool in ensuring safety during the intra-operative period. Mainly of use in deformity corrections, Tumor surgeries and other complex spine surgery, it is on its way to becoming a requisite piece of tech in the spine surgeon’s armamentarium.

The arrival of guidance and navigation capabilities in real-time combined with the computing power to reconstruct these into a 3D map has ushered in an era where robots and surgeons today work hand in hand to improve patient outcomes. These technologies have come a long way from merely improving the accuracy of pedicle screw placement. Today, image guided robotics and intra op navigation are being put to use in complex spinal surgeries, spinal revisions, intra-dural tumor resections and even spinal column reconstructions. In addition to improving accuracy, they also aid the surgeon by reducing the physiological element of fatigue from repetitive actions and reducing the exposure to ionising radiation.

Minimally invasive spine surgery techniques are today being used for an ever- expanding list of indications. Despite suffering from a steeper learning curve, reduced intra op and post op morbidity, shorter hospital stay and earlier return to normal life are making MISS a mainstay in the management of many degenerative, traumatic, deformity and neoplastic processes.

It will not be long before molecular engineering ties hands with biomaterial advances and materials such as Bone Morphogenetic Proteins (BMPs) are available on a commercial level for selective cases in spinal fusions. This is likely to eliminate the need for auto and allografts and is expected to even usher in an era of biodegradable spacers. The theoretical possibility of implanting genetically engineered Growth stimulating proteins into degenerated discs to bring about the regeneration of disc material is also being tested in various centres around the globe.

It is truly a great time to be practicing as a spine surgeon these days when the line between science fiction and science are rapidly blurring. The day is not far when the patient and the operating surgeon will no longer even need to be in the same operating room. These new machines and gizmos shall probably end up replacing every aspect of our professional lives.  Save the most quintessential of them all, a thorough understanding of the basic principles and biomechanics of the spinal column. For all said and done, in the words of the Wright brothers, “It is possible to fly without motors, but not without knowledge and skill”.

It’s paramount to understand the principles, concepts and surgical exposure to be an expert who will always have an edge to perform these specialized surgeries safely with the combination of the latest advances and technology.


How to Cite this ArticleKhurjekar K, Hadgaonkar S, Shyam A. Safety Scores in Spine Surgery – Technique or Technology? International Journal of Spine Jan-June 2019;4(1):1-2 .

1


(Abstract)      (Full Text HTML)      (Download PDF)


Non Fusion Options in Cervical Disc Herniations

Volume 4 | Issue 1 | Jan – June 2019 | Page 3-9 | Jwalant S. Mehta, Marcin Czyz


Authors : Jwalant S. Mehta [1], Marcin Czyz [1]

[1] The Royal Orthopaedic Hospital Bristol Road South Birmingham B31 2AP, UK

Address of Correspondence
Dr. Jwalant S. Mehta
1The Royal Orthopaedic Hospital Bristol Road South Birmingham B31 2AP, UK
Email : Jwalant_mehta@hotmail.com


Abstract

Cervical disc herniations are common disease encountered by spine surgeon. dISCESCTOMY and fusion have been long regarded as glod standard but non fusion options are gaining ground for speciifc indications. If the pathology is limited to one or two levels in the absence of instability, a limited posterior cervical foraminotomy (PCF) can be useful in decompressing the nerve roots to achieve clinical improvement in radiculopathy. A multilevel pathology with cord compression in the absence of instability can be treated effectively with a skip cervical laminectomy or a laminoplasty. In the presence of instability in two or single level pathology, where in the past a fusion would have been considered a gold standard, non-fusion options such as cervical disc arthroplasty have evolved (ACDR).
Keywords: Cervical dis herniation, foraminotomy, laminectomy, laminoplasty, cervical disc arthroplasty


References

1. Hillibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH. Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodeisis. JBJS Am 1999; 81: 519 – 528
2. Wigfield CC, Skrypiec D, Jackowski A, Adams MA. Internal stress distribution in cervical intervertebral discs: the influence of an artificial cervical joint and simulated anterior interbody fusion. J Spianl Disord Tech 2003; 16: 44 – 49
3. Puttlitz CM, Rousseau MA, Xu Z, Hu S, Tay BK, Lotz JC. Intervertebral disc replacement maintains cervical spine kinetics. Spine 2004; 29: 2809 – 2814
4. Powell JW, Sasso RC, Metcalf NH, Anderson PA, Hipp JA. Quality of spinal motion with disc arthoplasty: computer-aided radiographic analysis. J Spinal Disord Tech 2010; 23: 89-95
5. Sekhon LH, Ball JR. Artificial cervical disc replacement: principles, type and techniques. Neurol India 2005; 53: 445 – 450
6. Scoville WB. Recent developments in the diagnosis and treatment of cervical ruptured intervertebral discs. Proc Am Fed Clin Res. 1945; 2:23.
7. Woods BI, Hilibrand AS. Cervical radiculopathy: epidemiology, etiology, diagnosis, and treatment. J Spinal Disord Tech. 2015;28: E251–E259.
8. Church EW, Halpern CH, Faught RW, et al. Cervical laminoforaminotomy for radiculopathy: symptomatic and functional out- comes in a large cohort with long-term follow-up. Surg Neurol Int. 2014;5(suppl 15):S536–S543.
9. Albert TJ, Murrell SE. Surgical management of cervical radiculopathy. J Am Acad Orthop Surg. 1999;7:368–376.
10. Skovrlj B, Gologorsky Y, Haque R, et al. Complications, outcomes, and need for fusion after minimally invasive posterior cervical foraminotomy and microdiscectomy. Spine J. 2014;14:2405–2411
11. Bevevino AJ, Lehman RA Jr, Kang DG, et al. The effect of cervical posterior foraminotomy on segmental range of motion in the setting of total disc arthroplasty. Spine. 2014;39:1572–1577.
12. Zdeblick TA, Abitbol JJ, Kunz DN, et al. Cervical stability after sequential capsule resection. Spine. 1993;18:2005–2008.
13. Lubelski D, Healy AT, Silverstein MP, et al. Reoperation rates after anterior cervical discectomy and fusion versus posterior cervical foraminotomy: a propensity-matched analysis. Spine J. 2015;15: 1277–1283.
14. Caridi JM, Pumberger M, Hughes AP. Cervical radiculopathy: a review. HSS J. 2011;7:265–272.
15. Papavero L, Kothe R. Minimally invasive posterior cervical foraminotomy for treatment of radiculopathy : An effective, time-tested, and cost-efficient motion-preservation technique. Oper Orthop Traumatol. 2018 Feb;30(1):36-45. doi: 10.1007/s00064-017-0516-6.
16. Luo W, Li Y, Zhao J, Zou Y, Gu R, Li H. Skip Laminectomy Compared with Laminoplasty for Cervical Compressive Myelopathy: A Systematic Review and Meta-Analysis. World Neurosurg. 2018 Sep 8. pii: S1878-8750(18)32040-0. doi: 10.1016/j.wneu.2018.08.231.
17. Hidai Y, Ebara S, Kamimura M, et al. Treatment of cervical myelopathy with a new dorsolateral decompressive procedure. J Neurosurg 1999;90:178–85.
18. Ishihara A. Roentgenological investigation on the cervical lordosis of normal subjects. J Jpn Orthop Assoc 1968;42:1033–44.
19. Itoh T, Tsuji H. Technical improvements and results of laminoplasty for compressive myelopathy in the cervical spine. Spine 1985;10:729–46.
20. O’Brien MF, Peterson D, Casey AT. A novel technique for lamino- plasty augmentation of spinal canal area using titanium miniplate sta- bilization: a computerized morphometric analysis. Spine 1996;21: 474–84.
21. Yoshida M, Otani K, Shibasaki K, Ueda S. Expansive laminoplasty with reattachment of spinous process and extensor musculature for cervical myelopathy. Spine 1992;17:491–7.
22. Shiraishi T. Skip laminectomy—a new treatment for cervical spondylotic myelopathy, preserving bilateral muscular attachments to the spinous pro- cesses: a preliminary report. Spine J. 2002;2:108 –115.
23. Shiraishi T, Fukuda K, Yato Y, Nakamura M, Ikegami T. Results of skip laminectomy- minimum 2-year follow-up study compared with open-door laminoplasty. Spine (Phila Pa 1976). 2003;28:2667-2672.
24. Shiraishi T. A new technique for exposure of the cervical spine laminae: technical note. J Neurosurg. 2002;96(Spine 1):122–126.
25. Pickett GE, Mtsis DK, Sekhon LH, Sears WR, Duggal N. Effects of cervical disc prosthesis on segmental and cervical spine alignment. Neurosurg Focus 2004; 17: 30 – 35
26. Wigfield C, Gill S, Nelson R, et al. Influence of an artificial cervical joint compared with fusion on adjacent level motion in the treatment of degenerative cervical disc disease. J Neurosurg Spine 2002; 96: 17 – 21.
27. Eck JC, Humphreys SC, Lim TH, et al. Biomecahnical study on the effect of cervical spine fusion on adjacent-level intra-discal pressure and segmental motion. Spine 2002; 27 : 2431 – 4.
28. Matsunaga S, Kabayama S, Yamamoto T, et al. Strain on inter-vertebral discs after anterior cervical decompression and fusion. Spine 1999; 24: 670 – 5
29. Kotani Y, Cunningham BW, Abumi K, et al. Multidirectional flexibility analysis of cervical artificial disc reconstruction: in vitro human cadaveric spine model. J Neurosurg Spine 2005; 2: 188 – 194.
30. Phillips FM, Garfin SR. Cervical disc replacement. Spine 2005; 30: 527 – 533.
31. McAfee PC, Cunningham B, Dmitriev A, et al. Cervical disc replacement porous coated motion prosthesis: a comparative biomechanical analysis showing the key role of the posterior longitudinal ligament. Spine 2003; 28: S176 – S185
32. Dooris AP, Goel VK, Grosland NM, et al. Load sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine 2001: 26: E122 – E129
33. Anderson PA, Sasso RC, Hipp J, Norvell DC, Raich A, Hashimoto R. Kinematics of the cervical adjacent segments after disc arthoplasty compared with anterior discectomy and fusion: a systematic review and meta-analysis. Spine 2012; 37 (22 Suppl): S85 – S95
34. Takasali S, Graeur JN, Vaccaro A. Material considertaions for intervertebral disc replacement implants. The Spine Journal 4 (2004); 231S – 238S
35. Anderson PA, Rouleau JP, Bryan VE, Carlson CS. Wear analysis of the Bryan Cervical Disc Prospthesis. Spine 28 (20S); 2003: S186 – S194
36. Mummaneni PV, Burkus JK, Haid RW, Traynelis VC, Zdeblick TA. Clinical and radiographic analysis of cervical disc arthroplasty compared with allograft fusion: a randomized controlled clinical trial. J Neurosurg Spine 2007; 6: 198 – 209
37. McAfee PC, Reah C, Gilder K, Eisermann L, Cunningham B. A meta-analysis of comparative outcomes following cervical arthroplasty or anterior cervical fusion. Spine 37 (11); 2012: 943 – 952
38. Ryu WH, Kowalczyk I, Duggal N. Long term kinematic analysis of cerbical spine after single level implantation of Bryan cervical disc prosthesis. The Spine Journal 13 (2103): 628 – 634
39. Hisey MS, Bae HW, Davis R, et al. Multi-centre, prospective, randomized, controlled investiogational device exemption clinical trail comparing Mobi-C cervical artificial disc to anterior discectomy and fusion in the treatment of symptomatic degenerative disc disease in the cervical spine. Int J Spine Surgery 2014, 8
40. Harrod CC, Hillibrand AS, Fischer DJ, Skelly AC. Adjacent segment pathology following cervical motion-sparing procedures or devices compared with fusion surgery: a systematic review. Spine 2012; 37 (22 Suppl): S96 – S112
41. Goel VK, Faizan A, Palepu V, Bhattacharya S. Parameters that effect spine biomechanics following cervical disc replacement. Eur Spine J 2012; 21 (5): S688 – 699
42. Zhao Y, Du C, at al. Does rotation centre in artificial disc affect cervical biomechanics? Spine 40 (8); 2015: E469 – E475
43. Goffin J, Geusens E, Vantomme N, et al. Long term follow-up after interbody fusion of the cervical spien. J Spinal Disord Tech 2004; 17: 79 – 85
44. Bovouratwet P, Fu, Ondeck NT, et al. Safety of artificial single level cervical total disc replacement: A propensity matched multi-institution study. Spine 2018, sept 21
45. Segal DN, Wilson JM, Staley C, Yoon TS. Outpatient and Inpatient single level cervical total disc replacement: A comparison of 30 day outcomes. Spine June 11, 2018
46. Li Y, Shen H, Khan KZ, et al. Comparison of multi-level cervical disc replacement and multi-level anterior discectomy and fusion: A systematic review of biomechanical and clinical evidence. World Neurosurgery Aug 2018; 116: 94 – 104
47. Wu TK, Meng Y, Wang BY, et al. Is the behaviour of disc replacement adjacent to fusion affected by the location of the fused level in hybrid surgery? Spine J 2018, Aug 27.
48. Mehren C, Heider F, Sauer D, et al. Clinical and radiological outcome of a new total cervical dsic replacement design. Spine July 2018
49. Sasso RC, Anderson PA, Riew KD, Heller JG. Results of cervical arthoplasty compared with anterior discectomy and fusion: four-year clinical outcomes in a prospective, randomized controlled trial. J Bone Joint Surg Am 2011; 93: 1684 – 1692


How to Cite this Article: Mehta J S, Czyz M. Non Fusion options in Cervical Disc Herniations. International Journal of Spine Jan-June 2019;4(1):3-9 .


(Abstract) (Full Text HTML) (Download PDF)